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Abstract	  	  
	  

In this paper we investigate how the receipt of educational transfers, scholarships and related 
assistance programmes affects the labour supply of children and the marginal spending 
behaviour of households on children’s educational goods. We use a nationally representative 
household survey of unusual scope and richness from Indonesia. We found strong evidence 
of educational cash transfers and related assistance programmes significantly decreasing the 
time spent by children on income-generating activities in Indonesia. Households receiving 
educational transfers, scholarships and assistance were also found to spend more at the 
margin on voluntary educational goods. These results were stronger on children living in poor 
families. The findings of this study lend support to the growing view in the literature that 
educational transfers, scholarships and related assistance can actually have a positive impact 
on economic development by increasing the level of investment in human capital. Our results 
are particularly relevant for understanding the role of cash transfers and education assistance 
in middle-income countries, where enrolment rates are already at satisfactory levels, but the 
challenge is to keep post-primary students in school. Finally, the principle message that 
emerges from the study is: there are quantitatively non-negligible, average gains from 
educational transfers and support programmes on household education spending and child 
labour, especially for the poor. 

 

Key Words: Cash transfers, child labour, education expenditure, flypaper effect. 
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1.	  Introduction	   	  
 

Government transfers and subsidies that aim to address the issues of poverty, child labour and 

low educational attainment, especially among women and children, have generated 

substantial interest among researchers and policy makers. Educational transfers and subsidies 

have become particularly popular policy tools, as they can deliver the initial stimulus to move 

an economy to a relatively more desirable equilibrium in the presence of poverty traps, 

externalities and multiple equilibria (Banerjee 2003 and Galor and Zeira 1993). As market-

oriented, demand-side interventions that combat poverty and child labour, educational cash 

transfers, school voucher programmes and subsidised education schemes complement 

traditional supply-side policies, such as general subsidies or investments in schools, hospitals, 

and social services. Furthermore, they generate positive externalities and higher equity in 

educational expenditures, leading to higher levels of welfare and yielding concave returns for 

the policy makers (Das 2004).  

Both conditional and Unconditional Cash Transfers (UCTs) have been rigorously evaluated 

worldwide. Conditional transfer programmes such as Progresa (now referred to as 

Oportunidades) in Mexico, Bolsa Escola (now called Bolsa Familia) in Brazil, and Red de 

Proteccion Social in Nicaragua, have been showed to foster investment in human capital, 

increase the use of health resources, and successfully combat poverty and vulnerability (J. 

Behrman et.al 2005; Bourguignon et.al 2003). A vast amount of literature indicates that both 

conditional and Unconditional Cash Transfers (UCTs) have successfully increased school 

attendance and reduced the child labour supply (ECLAC, 2006; Fizbein and Schady, 2009; 

Behrman et al. 2005; Schady & Araujo 2008). However, recent impact evaluation studies 

have also shown that in some instances interventions that encourage schooling and aim to 

reduce child labour have had unintended consequences and have actually increased the 

probability of children engaging in work (Cigno and Rosati, 2005; Edmonds, 2007). 

Therefore, as government transfers and subsidies are becoming increasingly more popular in 

developing countries, the aim of this paper is to investigate the effect of educational transfers 

on school attendance and child labour, and to find to what extent the intended beneficiaries of 

public transfer programmes actually benefit from them. In particular, the study intends to 

investigate whether government transfers to a specific household member have an intra-

household ‘flypaper effect’, meaning that they “stick” to that specific member who receives 

it, such as a poor student, child, etc., or as the theory of altruism (Becker, 1974, 1981) 
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implies, they generate no or insignificant gains to the recipient of the transfer since 

households redistribute the extra income from an individual welfare scheme among all the 

members. 

In this paper, we first analyse the decisions to attend school and to work. Because the school 

and work decisions are closely related, they are treated as simultaneous decisions which will 

be analysed in the context of a bivariate Probit model. We begin by assessing the effect of 

child labour on schooling and how various individual and household characteristics affect the 

chances that a child will attend school and/or participate in other activities that may interfere 

with schooling. Next, we investigate how the receipt of educational transfers, scholarships 

and related assistance affects the labour supply of children in Indonesia. 

Finally, we test for the first time in Indonesia whether an intra-household flypaper effect exists for child-

targeted transfers. We investigate the impact of Indonesia’s education cash transfer programme for poor 

students (BSM, Bantuan Siswa Miskin) on both household and child-level voluntary education 

expenditures. For most households in Indonesia that received the education cash transfer for poor 

students, parents had more money for all expenditures, including expenditures on voluntary educational 

goods and other, non-educational goods. The existence of IFE in these households would indicate that 

parents voluntarily spend the extra money from the transfer on education or education-related goods and 

services for the child receiving the transfer.  

We will utilise a rich dataset that contains child-specific education expenditures, Indonesia Social and 

Economic Survey (Susenas) – 2009. It is a nationwide survey conducted to collect information on social 

and economics indices, which functions as a main source of monitoring social and economic progress in 

society. Susenas has been conducted on an annual basis since 1963. Since 1992, in addition to a basic 

social and economic questionnaire (core), a more specialised questionnaire was introduced (module). 

The core questionnaire contains basic information about household and individual characteristics 

including health, death, education/literacy, employment, fertility and family planning, housing, and 

household expenditure. There are three modules of Susenas and each module is added in a three-year 

cycle. In 2009, the module's topic was social life, culture, and education. Unlike previous Susenas, the 

same sample was used for both core and module questionnaires. It consisted of 291,753 households and 

was designed to be representative at national, province and district/city levels. The Susenas 2009-July 

survey contains an education cost data module containing various expenditure categories for each 

school-enrolled child. It will enable us to examine if the education cash transfer increased voluntary 

education expenditure and whether the fly-paper effect exists within households. 
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2.	  Schooling,	  Child	  Labour	  and	  Education	  Programmes:	  Review	  of	  the	  
International	  Evidence	  
 

Recent studies have shown that the high costs of education and limited access to schooling 

are the main factors behind low school enrolment and increasing child labour. Policies that 

reduce the price of education and increase access to schooling have thus been proposed to 

reduce child labour. Among them are unconditional assistance programmes, such as the cash 

transfer programme in Ecuador (Bono de Desarollo Humano), the old age pension 

programme in South Africa, or the child support grants, also in South Africa. They have been 

found to in general reduce child labour, increase school enrolment, reduce drop-out rates and 

improve health and nutrition in children (Edmonds and Schady 2009; Edmonds 2006; Case, 

Hosegood, and Lund 2005; Duflo 2003). Their close relatives, conditional transfer 

programmes such as Progresa (now referred to as Oportunidades) in Mexico, Bolsa Escola 

(now called Bolsa Familia) in Brazil, and Red de Proteccion Social in Nicaragua, have been 

shown to have wider development effects, fostering investment in human capital, increasing 

the use of health resources, and successfully combating poverty and vulnerability (J. 

Behrman et.al 2005; Bourguignon et.al 2003).  

Latin American examples compellingly show that unconditional cash transfers can assist poor 

households in meeting the prohibitive cost of children’s education, also that they can 

contribute to retaining children in school and limiting child labour supply. Theoretically, as 

Ravallion and Wodon (2000) suggest, this link can be demonstrated through an experiment 

that creates an exogenous decrease in the price of schooling, which would allow us to see the 

impact of the price of education on child labour supply. The wage rate for child labour can be 

appropriately used as a component of the price of labour. But unfortunately, since the wage 

rate is also the price of leisure, disentangling the own price effect from the cross-price effect 

is tricky using wage data. The effects of school price (i.e. as measured by presence of a 

school in the region, distance or travel time to school, expenditures on schooling, etc.) on 

child labour are thus mixed, primarily due to indicators that poorly capture the school price 

(Grootaert and Patrinos, 1998). 

Empirically, however, it has been shown that there is a trade-off between children’s 

education and work. Studies in Brazil revealed that child labour tends to drive children away 

from both school and leisure. Most children who work in Brazil also attend school, but their 

lower share is enrolled and more regularly attends classes than the share of children who are 
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not working. School-aged children who work are also less likely to do their homework or 

attend after-school tutorials. There thus appears to be some reduction in quantity of schooling 

for children who engage in child labour (World Bank 2001).   

Moreover, child labour can impede the children’s ability to acquire or retain material at 

school, as it often subjects them to physical and emotional strains. In rural areas, working 

children are often employed in heavy manual labour and exposed to unsafe working 

conditions. Children who work on sisal (jute) or sugarcane plantations often suffer injuries 

from long knives and machetes used for cutting, piling, and hauling the crops. In urban areas, 

child workers may engage in other arduous activities, such as street vending or garbage 

collection, or illegal ones, like selling drugs or prostitution (Cardoso and Souza 2003). At the 

same time, there are rewards to work, especially when the skills learnt at the workplace 

enhance the returns from schooling. 

It is generally agreed that the cause of child labour is parental poverty (Basu, 2003). Basu and 

Van (1998) argue further that the past household models discounted an important economic 

element in the child labour analysis: a labour market where children are potential workers 

will be prone to multiple equilibria. Basu (2003) explains why this insight is important: 

"Consider a poor country, where wages are very low and all children are for that very reason 

made to work. Now assume, for the sake of argument, that child labour is banned. The firms 

that are using child labour will be forced to seek adults to fill those gaps. Hence the wage rate 

of adult labour will rise. Now, it is entirely possible that if the wages were high to start with, 

then the parents would not have sent the children out to work anyway. Hence, even if the law 

is now revoked, wages will be high, children will not work and this will sustain the high 

wage. In other words, this economy had multiple equilibria and hence the law works simply 

as a mechanism for deflecting the economy from the inferior equilibrium, where wages are 

low and children work, to the superior equilibrium, where wages are high and there is no 

child labour."  

In poor households, especially in developing countries, the decision to send children to work 

is quite common, as children are usually a valuable economic resource for poor parents. Cain 

(1977) found that children in a Bangladeshi village were economically active from the age of 

six, and that boys were net producers by the age of 15. According to Mendelievich (1979), 

Cain and Mozumder (1980) and Grootaert and Kanbur (1995), child labour is an integral part 

of the household's risk management strategy. Poor households with little savings, little access 

to credit and a limited asset base face harsh repercussions from job losses and other shocks on 
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the households' income, and hedge against these risks by sending children to work. Jacoby 

and Skoufias (1997) confirm these findings, having found that child labour helps smooth the 

incomes of poor rural Indian families who have little access to credit.  

Despite the well-established links between education, child labour and cash transfers that 

support education, partly due to data limitations few previous studies have examined the 

impact of an education cash transfer on child-specific expenditures (even Shi 2008, examines 

a school fee exemption and subsidy). According to Rosenzweig (1986), when the household 

head acts as the ultimate decision-making unit, the impact of a child-targeted transfer will 

depend on the allocation of resources among family members by the household head. For 

example, if one child in a family receives a free meal in school, their parents might reallocate 

away some food at home to other members of the family, such as their siblings. Similarly, 

Jacoby (2002) states that if parental altruism is operative in a Beckerian (1974, 1981) 

household model, an infra-marginal transfer to one child should not affect the consumption of 

that child, holding household resources constant. 

Relatively little attention has also been paid to whether cash transfers that support education 

have fly-paper effects. Even the existing studies on intra-household flypaper effects are 

mostly nutrition-related, with the exception of Shi (2008). For example, Jacoby (2002) 

examines the impact of a school-feeding programme on child caloric intake in the 

Philippines. He finds no re-allocation of calories away from the child within the household in 

response to the feeding programme. The total daily calorie intake of the recipient child rises 

by almost one to one with the school meal calories. Similarly, Afridi (2005) analyses the 

impact of a school feeding programme on daily caloric consumption of children in India and 

investigates factors that affect the magnitude of the reallocation of resources. The study finds 

that the nutrient intake of programme participants increased by 49 to 100 percent per child. 

Finally, Shi (2008) studies the existence of resource reallocation within households after a 

child receives a subsidy for covering the schooling fees in rural China. The study concludes 

that the reductions in educational fees generated by the subsidies were matched by increased 

voluntary educational spending on the children receiving these reductions, providing strong 

evidence of an intra-household flypaper effect. 
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3.	  Schooling,	  Child	  Labour	  and	  Education	  Programmes:	  Review	  of	  the	  
Evidence	  from	  Indonesia	  
 

Almost all educational indicators in Indonesia have improved very remarkably over the past 

40 years (Suharti 2013). Net enrolment rates for both primary and junior secondary schools 

experienced significant increases during this period of time. The net primary school 

enrolment rate has increased from 72 percent in 1975 and then reached nearly universal 

coverage by 2009. The net enrolment rate for junior secondary education also rose from 18 

percent in the 1970s to about 70 percent in recent years. Achievements in early childhood 

education (ECD) are also notable. Currently, 50 percent of four- to six year-olds have 

received some type of early learning or education (up from 25 percent a decade earlier). The 

improvements in school enrolment rates have edged Indonesia closer to other countries in the 

Asia-Pacific region in terms of educational attainment, resulting in a higher than usual senior 

secondary enrolment rate for its level of GDP per capita. For example, Indonesia's enrolment 

rates profile have paralleled that of China, with higher than expected secondary education 

enrolment rates for its level of income, but still behind in higher education.  

Indonesia is also one of the few countries in the world that increased public expenditure on 

education by over 60 percent during the last five-year period. The Government of Indonesia 

introduced a constitutionally mandated allocation of (a minimum of) 20 percent of 

government spending to education (hereafter "the 20 percent rule") in 2003. This decision led 

to an enormous increase in funds allocated for education, making it the largest government 

expenditure after fuel subsidies (World Bank 2013). 

However, in the backdrop of inspiring outcomes, the benefits of the new education policy are 

still not satisfactory. For example, a study conducted by Arza Del Granado, Fengler et al. 

(2007) found the existence of a wide gap between the educational attainment of poor and rich 

groups at the junior and senior secondary levels. Children from poor families are 20 percent 

less likely to be enrolled in junior secondary than children from wealthier families. 

Additionally, Suryadarma (2006) found that children living in rural areas have less access to 

junior secondary education. Jones (2003) conducted qualitative interviews in several 

provinces in Indonesia and found several reasons behind the disparities in access to schooling 

across Indonesia. Firstly, children from poor families were found to have difficulties in 

paying for transportation costs associated with schooling. Secondly, the relatively low 

importance given to education by parents in some parts of the country caused children not to 
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attend school. Hardjono (2004) investigated the influence of poverty on school drop-outs in 

two provinces in Indonesia, Bali and West Nusa Tenggara. Most importantly, the study found 

that non-continuation to junior secondary school in both provinces was due to the inability to 

pay, particularly for transportation costs, and the inadequate capacity and facilities in the 

junior secondary schools. The study found also that cultural factors also play an important 

role in educational attainment. One of the primary reasons for the very high primary school 

completion rates among Balinese children is the culture of prioritising education in Bali. This 

was in contrast to a relatively higher rate of children who did not finish primary school in 

West Nusa Tenggara, as a result of a low regard for education among the parents there. 

Similarly, the Madurese tribe in Pontianak traditionally arrange for their daughters to be 

married as soon as they finish primary school. 

Poverty combined with the low educational level of families drives Indonesian children into 

child labour. It is estimated that there are some four million children engaged in child labour 

in Indonesia, while nearly two-thirds of out-of-school children engage in some productive 

activity. One quarter of out-of-school children in the age group 10-14 years have less than 

four years of education, implying that they will grow up to be functionally illiterate adults. 

These estimates highlight the importance of expanding educational support programmes and 

accelerating their implementation.  

According to Priyambada, Suryahadi and Sumarto (2002), schooling and part-time work 

often go together in Indonesia. They observed a declining trend in child labour, which later 

come to a halt as a result of the 1990s crisis, and found that children attend school and engage 

in work at the same time. The study also found that students from severely poor families 

search for employment to finance their own education. Encouragingly, some of the most 

recent figures have shown that overall children’s employment declined during the period 

from 2007 to 2010 from 4.9 percent to 3.7 percent for the narrower 10-14 year-old child 

population (UCW-ILO, UNICEF, and WB 2012). 

Child employment also remains an important policy concern in Indonesia because as many as 

half of the children who work are exposed to hazardous conditions in the workplace. Many of 

them are engaged in the worst forms of child labour, such as agriculture and domestic 

service. Children who work in agriculture, on rubber, palm oil and tobacco farms, often carry 

heavy loads, use pesticides and work long hours. They may be exposed to extreme weather, 

sharp objects, falls from tall heights and respiratory problems. Children, primarily girls aged 

12 to 15, also work as domestic servants. They often work long hours, sometimes without 
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days of rest or holidays, and may be at risk of mental, physical and sexual abuse (USDOL 

2011).  

The prevalence of child work varies greatly by location and the level of education of the head 

of household. The incidence of child labour is much higher in rural districts in comparison to 

cities. It was in the rural areas, however, that Indonesia experienced the largest decline in 

child labour during the last decade. The falling trends in rural areas mirror the declining 

dominance of the agricultural sector. 

Child labour incidence has also been found to fall with the level of education of the 

household head. Male children living in households where the head has not finished primary 

education have a six times higher probability to work than in households where the head has 

a university degree. Child work incidence in general has been decreasing for all the 

household-head levels of education in Indonesia (Kis-Katos and Sparrow 2009). 

Since the 1998 economic crisis, the government of Indonesia, in partnership with several 

development organisations, has been rolling out social assistance programmes to address the 

financial difficulties and other constraints that parents and children face with respect to 

schooling. Broadly, these education-related government social assistance programmes 

include a school operational assistance programme, a scholarship programme for students 

from poor families, and school construction and rehabilitation schemes. The fourth 

amendment of the Indonesian Constitution also stipulated that the budget for education 

should be at least 20 percent of the total State budget. In recent years, there has been a small 

but growing literature on the evaluation of education assistance programmes in Indonesia, 

especially focusing on school enrolment and dropout rates. Cameron (2009) evaluates the 

role played by Indonesia’s social safety net scholarships programme in reducing school 

dropout rates during the Asian financial crisis, with the assumption that many households 

would find it difficult to keep their children in school, which caused the dropout rates to be 

high. He found scholarships to be effective in reducing dropping out from lower secondary 

school, the level of schooling at which students were historically most at risk of dropping out. 

Sparrow (2007) investigated the impact of the Indonesian scholarship programme, which was 

implemented in 1998 to preserve access to education for the poor during the economic crisis. 

The study found that the programme increased school enrolment, especially for primary 

school aged children from poor rural households. The paper concludes that the scholarships 

had assisted households in smoothing consumption during the crisis period. 
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In this study, we seek to examine the effects of the Cash Transfer for the Poor Students 

Programme/Bantuan Siswa Miskin (BSM) that was introduced in 2008 and covers all 

education levels from Elementary school level to University. The key objectives of the 

programme are to remove barriers that marginalised students face in participating in 

education, assist poor students in gaining appropriate access to education services, prevent 

dropping out from school, help meet the educational needs of at-risk children and support the 

Government’s Nine Years Compulsory Education programme. The programme provides cash 

transfers to cover educational costs (such as books, school transportation and uniforms) for students 

from poor households, who are selected by school administrators. It is fully financed by the Central 

Government and does not require any contributions or cost sharing on the part of students as 

beneficiaries, local governments or schools. At present, the programme covers eight million 

students across the country, ranging from primary school to tertiary education level. 
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4.	  Analytical	  and	  Conceptual	  Framework	  	  
 

We first develop the theoretical model behind the schooling and labour supply decision of 

children, assuming the “unitary model” of the household, where the head of the household is 

the decision maker. Our model follows Ravallion et al. (2000) and Rosati et al. (2003), where 

the utility function of the representative household in our model is given by: 

𝑈 = 𝑈 𝐶,𝐻, 𝑆:𝑋  

where household consumption is 𝐶, 𝐻 is the child’s leisure, 𝑆 is child’s school attendance and 

𝑋 is a vector of exogenous household child, household and demographic characteristics that 

parameterise the utility function.  

The time constraint that maximises utility can be expressed as: 

𝑇 = 𝐻 + 𝑆 + 𝐿 

where the household head allocated the child’s total time-𝑇, between leisure –𝐻, school 

attendance-𝑆, and child’s labour supply-𝐿 By equating adult exogenous household income-𝑌 

and output from household production with the cost of production and household 

consumption, the household budget constraint can be stated as: 

𝑃!𝐶 + 𝑃!𝑆 ≤ 𝑌 +𝑊𝐿 

The household utility maximisation problem can be thus formally stated as: 

max
!,!,!

𝑈(𝐶,𝐻, 𝑆:𝑋) 

𝑠. 𝑡.      
𝑃!𝐶 + 𝑃!𝑆 ≤ 𝑌 +𝑊𝐿
𝑇 = 𝐻 + 𝑆 + 𝐿  

where 𝑃!, 𝑃! and 𝑊 are price of consumption, schooling and child labour. We assume 

household income, adult labour supply and leisure to be exogenous. Thus, when parents 

become unemployed, it is not because of their choice but due to external market conditions. 

Solving the above model yields several important inferences. Comparative statics properties 

of the model show that an increase in parent’s income/returns to labour will lead to an 

increase in the probability of the child attending school and reduces the numbers of hours the 

child works. Similarly, when there are high returns to child labour (increased work 

opportunities, higher wages), both schooling and leisure will fall, and the supply of labour 
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will rise. Employing this framework it can be shown how child labour can be a function of 

not only income and wealth but also of parent’s occupation, characteristics and preferences. 

Next, we evaluate the impact education cash transfers and related assistance on child labour 

and educational expenditure. We start with the hypothesis that the education cash transfer is 

fully fungible. Since households have their own preferences on spending, the notion of the 

cash transfer being targeted at students becomes inconsistent with the concept of the transfer 

being fully fungible. Households have the tendency to cut their own planned spending when 

the transfer is less than they would have intended to spend. Under this scenario, one should 

not see on average a differential impact on transfer recipients versus non-transfer recipients. 

But at the same time there is empirical evidence of flypaper effects where individually 

targeted transfers (such as child-specific transfers) had increasing and positive effects on 

these individuals/children’s outcomes. Finally with the possibility that expected outcomes to 

being ambiguous from a theoretical perspective, the impact of the educational cash transfer 

can be presented under the framework of maximising household utility. The household utility 

maximising problem can be represented as: 

max!,! 𝑈(𝑋,𝐸,𝑎!,𝑎!)                        

𝑆. 𝑡.          𝑃!𝑋 + 𝑃!𝐸 ≤ 𝐼                         

The household maximises its utility over two sets of goods: consumption of voluntary 

educational goods-𝐸 and a vector of all other goods-𝑋. We assume that both 𝑋 and 𝐸 are 

normal goods and 𝑈 𝑋,𝐸  satisfy the conditions 1   𝑈! > 0,𝑈! > 0, 2   𝑈!! < 0,𝑈!! <

0, 3 𝑈!" > 0. Income is denoted by 𝐼 and 𝑃! represents the price of the composite 

good/other goods, and 𝑃! is the price of voluntary educational goods. The parameters 𝑎! and 

𝑎! represents household preferences for voluntary educational goods and the composite good, 

which are determined by individual and household characteristics such as age, gender, 

education, demographic compositions, etc. Assuming an interior optimum and combining the 

first-order conditions, we can derive an equation: 

𝜕𝑈(𝑋,𝐸,𝑎!,𝑎!)/𝜕𝑋  
𝜕𝑈(𝑋,𝐸,𝑎!,𝑎!)/𝜕𝐸

=
𝑃!
𝑃!
= 𝑃                       

Equation (…) is the relative price of the composite good that yields the usual utility 

maximisation condition, which states that the household will equate the marginal rate of 
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substitution between 𝑋 and 𝐸 to the ratio of the prices of the two goods. Optimal demand 

functions for 𝑋 and 𝐸 can be expressed as: 

𝑋∗ = 𝑋(𝐼,𝑎!,  𝑎!,P)                              

𝐸∗ = 𝐸(𝐼,𝑎!,  𝑎!,P)                              

The consumption of voluntary educational goods-𝐸 will be a function that is increasing in 

income, preferences and the relative price of the composite good. 

Subsequently, the educational cash transfer can be introduced by re-writing a new budget 

constraint that maximises 𝑈 as: 

𝑆. 𝑡.          𝑃!𝑋 + 𝑃!𝐸 ≤ 𝐼+T                    

The new optimal demand functions with the cash transfer can be written as: 

𝑋∗ = 𝑋(𝐼,𝑎!,  𝑎!,P, T)                              

𝐸∗ = 𝐸(𝐼,𝑎!,  𝑎!,P, T)                              

 

It is evident that the cash transfer will not alter the relative price of education and will only 

induce an income effect.  
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5.	  Empirical	  Strategy	  and	  Data	  
 

We begin with the econometric specification of the child’s decision to attend school or to 

work. The decision for a child to attend school, supply labour, or both, is a time allocation 

decision. Thus the decision whether a child works or attends school is a joint one as the child, 

or its parents, would have to choose between both activities. We use a bivariate Probit model 

that explicitly takes this interdependency into account and tests the likelihood of children 

working and going to school, taking into consideration varied individual and household 

characteristics. The model permits for the existence of possible correlated disturbances 

between two Probit equations. It also allows us to test whether the joint estimation has 

additional explanatory power compared to using univariate Probit estimation for each 

decision. 

The general structure of the bivariate Probit specification can be expressed as: 

𝑦!∗ = 𝑿𝟏! 𝜷𝟏 + 𝜀! 

𝑦!∗ = 𝑿𝟐! 𝜷𝟐 + 𝜀!, 

where the observability criteria for the two binary outcomes can be stated as: 

𝑦! =
1  𝑖𝑓  𝑦!∗ > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑦! =
1  𝑖𝑓  𝑦!∗ > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

where in turn 𝑿𝟏 and 𝑿𝟐 are vectors of individual and household covariates that effect the 

child’s schooling and labour supply decision respectively. 𝜀! and 𝜀! are error terms to have a 

bivariate normal distribution with 𝐶𝑜𝑣 𝜀!, 𝜀!|𝑿𝟏,𝑿𝟐   =𝜌 

The joint probabilities that enter into the likelihood function can be expressed as: 

ℙ!" = 𝑃𝑟 𝑦! = 𝑖, 𝑦! = 𝑗  |𝑿𝟏,𝑿𝟐   = Φ 𝕡𝑿𝟏! 𝜷𝟏,𝕢𝑿𝟐! 𝜷𝟐;   𝕡,𝕢, 𝜌 , 

where  𝕡 = 1  𝑖𝑓  𝑦! = 1
−1  𝑖𝑓  𝑦! = 0      and    𝕢 == 1  𝑖𝑓  𝑦! = 1

−1  𝑖𝑓  𝑦! = 0 
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The log-likelihood for the bivariate Probit is then given by: 

ℓ𝓁 𝜃 = lnΦ!" 𝜃 +
!!!!,!!!!

lnΦ!! 𝜃
!!!!,!!!!

+ lnΦ!" 𝜃 + lnΦ!! 𝜃
!!!!,!!!!!!!!,!!!!

, 

 

Where Φ!"(⋅) is the joint probability that 𝑦! assumes a value of 𝑖 and 𝑦! takes a value of 

𝑗, 𝑓𝑜𝑟  I,j=0,1 and 𝜃 is the parameter vector consisting of 𝜷𝟏,𝜷𝟐 and 𝜌. Maximum likelihood 

estimates are obtained by simultaneously setting to zero the derivative of the log likelihood 

function with respect to the parameters of interest. The estimated regression coefficients will 

be converted into marginal effects with the same vector of covariates being included in the 

two equations for the system to be identified. 

Subsequently, we employ the quasi-experimental propensity score methodology to estimate 

the impact of education transfers and related assistance on child’s labour supply and 

educational expenditure.  

We will utilise a rich dataset that contains individual-specific education expenditures, 

enabling us to examine if the education cash transfer increased voluntary education 

expenditure and whether the fly-paper effect exists within the household. In this study, we 

accept the existence of the intra-household fly-paper only if there is a statistically significant 

increase or positive impact on the voluntary education expenditure of a child receiving 

education cash transfer. We take into account only voluntary education expenditures at the 

child-level when seeking for the intra-household flypaper effect. However, for the sake of 

robustness and to gauge the general impact of the programme, we separately estimate 

treatment effects at the household-level. 

The basic problem in any treatment evaluation begins with the inference of a causal 

relationship between the treatment and outcome. In a canonical single treatment setting, one 

can observe 𝑌! , 𝑋!,  𝐷! , 𝑖… ,𝑁 and the impact on 𝑌 from a hypothetical change in  𝐷 while 

holding 𝑋 constant. Such inference is the key feature of a potential outcome model, where the 

outcome variable of the treated state is compared to the outcome variable of the untreated 

state. However, it is impossible to simultaneously observe both states for any given 

individual. Thus, the problem is akin to one of missing data, which can be solved by 

techniques of casual inference carried out in terms of counterfactuals. The counterfactual 



19	  
	  

question is: `what would have happened to children who received the education transfer if 

they had not received the transfer’. First, assume the setup of a randomised treatment 

assignment, where no one is included in the treatment group because the benefits of the 

treatment to that individual would be large, and no one is excluded because the expected 

benefit is small. Let the vector of observables be 𝑌! , 𝑋!,  𝐷! , 𝑖… ,𝑁  . Where 𝑌 is the scalar-

value outcome variable, 𝑋 is a vector of observables, and 𝐷 a binary indicator of treatment (𝐷 

takes the value of 1 if the child receives the transfer, 0 otherwise). In the potential outcome 

framework, one can define ∆ as the difference between the outcome in the treated and 

untreated states as: 

∆= 𝑌! − 𝑌! 

It is important to note that ∆  is not directly observable, since an individual cannot be observed 

in both states.  The two key evaluation parameters that will be used in this study will be the 

average treatment effect on the treated (ATT), defined as (in sample analogues): 

ATT =
1
N ∆!|D! = 1

!!

!!!

 

Where N! = D!!
!!! . 𝐴𝑇𝑇 is the mean effect of those who actually participate in the 

programme. The treatment evaluation problem can be easily understood by writing the ATT 

as 

𝐴𝑇𝑇 = 𝐸 ∆|𝐷 = 1 = 𝐸 𝑌!|𝐷 = 1 − 𝐸(𝑌!|𝐷 = 1) 

From the above equation, the problem of selection bias is straightforward, since the second 

term on the right side- 𝐸(𝑌!|𝐷 = 1), the counterfactual mean of the treated, is not observable. 

If the condition 𝐸 𝑌!|𝐷 = 1 = 𝐸(𝑌!|𝐷 = 1) holds, one can use the non-participants in the 

cash transfer programme as the comparison group. But with non-experimental data this 

condition will not hold, since the components that determine the receiving the transfer also 

determines the outcome variable of interest. Thus, the outcomes of the transfer recipients 

would differ even in the absence of receiving the transfer, leading to a selection bias. It may 

be the case that selection bias can be fully accounted for by observables characteristics (such 

as age, skill differences, etc.). In this case, simply including the relevant variables in the 

outcome equation can eliminate selection bias. But in practice, unobservable characteristics 

effecting participation can also influence outcomes. 𝐴𝑇𝑇 can be thus expressed as: 

𝐸 𝑌!|𝐷 = 1 − 𝐸 𝑌!|𝐷 = 0 = 𝐴𝑇𝑇 + 𝐸 𝑌!|𝐷 = 1 − 𝐸 𝑌!|𝐷 = 0  
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The difference between the left hand side of the equation and the 𝐴𝑇𝑇 is the self-selection 

bias. The true parameter 𝐴𝑇𝑇 is only identified if 

𝐸 𝑌!|𝐷 = 1 − 𝐸 𝑌!|𝐷 = 0 = 0 

In this paper, we adopt the quasi-experimental propensity score matching method (PSM) that 

deals explicitly with treatment selection bias and addresses the key evaluation problem of 

𝐸 𝑌!|𝐷 = 1  being unobservable. 

The essential idea of propensity score matching (PSM) is to match participants and non-

participants on their observable characteristics. The mean effect of treatment (participation) 

can be estimated as the average difference in outcomes between the treated and non-treated. 

When the counterfactual mean for the treated- 𝐸 𝑌!|𝐷 = 1 , is not observed, one has to 

invoke `identifying assumptions' to estimate the casual effect of a programme on the 

outcome. The first identification assumption in propensity score matching is referred to as the 

conditional independent assumption (CIA), and is expressed as: 

𝑌!,𝑌!   ⊥ 𝐷|𝑋 

It states that outcomes are independent of programme participation, after controlling for the 

variation in outcomes induced by differences in 𝑋. The second assumption identification 

assumption is referred to as the overlap or matching assumption, written as 

0 < 𝑃𝑟 𝐷 = 1|𝑋 < 1 

This assumption implies that for each value of 𝑋 there is both treated and untreated 

individuals. In other words, for each participant there is another non-participant with a similar 

𝑋. A practical constraint that exists in matching is that when the number of covariates 𝑋! 

increases, the chances of finding a match reduces. However, Rosenbaum and Rubin (1983) 

showed that matching on the propensity score 𝑃(𝑋)- the probability of participating in a 

programme, could achieve consistent estimates of the treatment effect the same way as 

matching on all covariates. Essentially, the proposition Rosenbaum and Rubin (1983) can be 

stated as: Let 𝑃 𝑋!  be the probability of unit 𝑖 having been assigned to treatment, defined as 

𝑃 𝑋! ≡ Pr 𝐷! = 1 𝑋!) = 𝐸(𝐷! 𝑋! . Assume that 0 < 𝑃 𝑋! < 1, for all 𝑋! and 

Pr 𝐷!,𝐷!  ,𝐷!   𝑋!,𝑋!,…𝑋!) = 𝑃 𝑋! !!!!!,…! (1− 𝑃(𝑋!)!!!!      for the 𝑁 units in the 

sample. Then, 𝑌!!,𝑌!! ⊥ 𝐷!   |  𝑋!   ⇒    𝑌!!,𝑌!!   ⊥ 𝐷!   𝑃 𝑋! . Corollary: If  𝑌!!,𝑌!!   ⊥

𝐷!   |  𝑋 and the assumptions of the above proposition hold, then 



21	  
	  

∆|!!! = 𝐸 𝐸 𝑌! 𝐷! = 0,𝑃 𝑋! |𝐷! = 1 . The proposition implies that observations with the 

same propensity score have the same distribution of the full vector of covariates 𝑋!. The 

propensity score will be estimated by a Probit model: Pr 𝐷 = 1|𝑋 = 𝑥 = Φ 𝑋′𝛽 . 

After estimating the propensity score, the next decision to be made concerns the common 

support region(s). Enforcing the common support region ensures that any combination of 

characteristics observed in the participation group can also be observed among non-

participants. The approach referred to as the `minima and maxima' condition will be used in 

all estimations in this paper. The basic idea of this condition is to delete all participants, 

whose propensity score is smaller than the minimum and higher than the maximum in the 

non-participants. Therefore participants who fall outside the common support region will be 

discarded and for these individuals the treatment effect will not be estimated. When the 

proportion of lost individuals is small, this poses few problems. However, if there is a 

significant reduction in the sample size, then there are doubts about whether the estimated 

effect on the remaining individuals can be viewed as a representative of the full sample. 

Having enforced the common support region, the next step is to choose the matching 

algorithm. The general formula for the matching estimator is given by: 

𝐵! =
1
𝑁!

𝑌!! − 𝑤 𝑖, 𝑗 𝑌!!
!!∈{!!!}

 

Where 𝐵! denoted the matching estimator for the bias, 0 < 𝑤 𝑖, 𝑗 ≤ 1 is the set of treated 

individuals and 𝑗 is an element of the set of matched comparison units. 𝑊 𝑖, 𝑗  represents a 

weighting function that depends on the specific matching estimator. Results will be presented 

for four matching algorithms: nearest-neighbor matching, caliper matching, radius matching 

and kernel matching. The nearest neighbour matching method assigns a weight equal to one, 

𝑊 𝑖, 𝑗 = 1, and takes each transfer recipient in turn and identifies the non-recipient with the 

closest propensity score. The nearest neighbor method will be implemented with 

replacement, so that a non-recipient can be used more than once as a match. A variant of the 

nearest neighbour matching is calliper matching. The calliper matching method chooses the 

nearest neighbour within a calliper of width 𝛿, so that 𝑗: 𝑃 𝑋! − 𝑃 𝑋! < 𝛿  where 𝑃(𝑋) 

is the propensity score. Therefore calliper matching imposes a form of quality control on the 

match by setting a tolerance level on the maximum propensity score distance. Dehejia and 

Wahba (2002) introduced a variant of calliper matching which is referred to as radius 
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matching. In radius matching the idea is to use not only the nearest neighbour within each 

calliper but all of the comparison members (non-participants) within the calliper. The final 

matching algorithm that will be used in the study is referred to as kernel matching. Kernel 

matching uses all the non-participants for each participant in the matching process. The 

kernel is a function that weights the contribution of each non-participant, so that more 

importance is attached to those non-participants providing a better match. The Gaussian and 

the Epanechnikov will be used as weighting functions with kernel matching. 

The final step in propensity score matching is to assess the matching quality. Three measures 

will be used to judge the performance of the match: standardised bias and the t-Test. The 

standardised bias for each covariate as suggested by Rosenbaum and Rubin (1985) is defined 

as the percentage of the square root of the average sample variances in both groups, and is 

expressed as: 

𝑆𝐵!"#$%" = 100 ∙
𝑋! − 𝑋!

0.5 ∙ (𝑉! 𝑋 + 𝑉! 𝑋 )
 

𝑆𝐵!"#$%" = 100 ∙
𝑋!! − 𝑋!!

0.5 ∙ (𝑉!! 𝑋 + 𝑉!! 𝑋 )
 

Where 𝑋!(𝑉!) is the mean (variance) in the treatment group before matching and 𝑋!(𝑉!)  the 

analogue for the comparison group. 𝑋!!(𝑉!!) and 𝑋!!(𝑉!!)  are the corresponding values 

for the matched samples. 

For all child-level educational expenditure analysis, we use children of the age of 6 to 18 

years. We only consider children who regularly participate in the labour market as child 

workers. It is assumed that these children supply labour to either earn a living for themselves or to 

supplement household incomes. Children engaged in housekeeping activities and performing household 

chores – such as cleaning, cooking, or washing – are thus not regarded to be child labour in this study. 

Being consistent with other previous studies on child labour and in accordance with the law, children 

aged less than fifteen years who participate in the labour market will be considered as supplying labour. 

Since all work related questions were asked only for individuals above the age of ten years, our sub-

sample for child labour supply will be for all children between the ages of ten to 14 years. The treatment 

variable for children receiving any educational assistance will be a binary variable (yes=1 and no=0) 

generated from the survey question of “Receive scholarship/educational assistance in the past year?” 
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6.	  Empirical	  Results	  
 

Table 4 gives the estimated results from the bivariate Probit regressions. The first column of 

estimates gives the parameters that affect the work decision, whereas the second gives the 

estimates of the parameters that affect the schooling decision. The correlation coefficient-𝜌, 

is significantly negative in the estimations. This means that there is a negative relationship 

between attending school and working. This could imply that there are some unidentified 

factors that increase the probability of attending school and at the same time decrease the 

probability of working. Schooling and child labour are thus activities that children, or their 

parents, have to choose between.  

According to Table 4, the probability of working increases with the child’s age. The age variable 

captures the effect of the absolute value of the labour of a child of a given age. Thus this could be 

interpreted as an indication of the fact that the accumulated human capital (in case of children) 

increases potential wages and therefore the probability of working. Virtually all empirical work on 

child labour has indicated that the age and gender of the child are important determinants of their 

educational and work activities. Being a male child increases the probability of a child being 

involved in labour activities, which is also evident from Table 4. 

We assumed that parents’ ages would also have an impact on child activities. According to 

Table 4, the higher the household head’s age, the higher the educational attainment of the 

child and the lower the likelihood for the child to work. Younger parents are likely to be at a 

more financially constrained point in their life and may have less capacity to cover school 

expenses, thus having a greater need for their children’s labour. There is ample empirical 

evidence in the literature that the education level of the parent decreases the probability of 

their children working and increases the probability of schooling. Parental education can 

potentially influence the allocation of children’s time, mainly through income and 

preferences.  

Since both market work and household work are common in developing countries, we use 

proxies to capture both these types of activities. We use household’s heads in agriculture to 

capture market work, since usually most children work close to home, so that it is local 

labour market conditions that will determine the demand for their labour. Similarly, we proxy 
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the demand for domestic work by using housing facilities, such as poor access to water and 

sanitation conditions. The absence of such services might substantially increase the domestic 

burden workload for children without, or without directly, affecting the decision to send a 

child to school, once the wealth of the household has been controlled for. Our findings 

indicate that children in agricultural households have a higher probability of working and less 

likelihood of attending school. Similarly, children living in houses with poor sanitation are 

also more likely to work and less likely to attend school. 

The nature of the household head’s occupation also matters: if the parents are unemployed or 

employed irregularly, a child’s labour may be considered as a substitute for their labour or 

hired labour, thus decreasing the chances of that child attending school. Furthermore, a 

father’s employment in the informal sector, as opposed to the formal one, raises the 

probability that the child will also work in the informal sector. Being consistent with this 

expectation, our results show that when the household head works in the informal sector, the 

probability of children to supply labour is also higher. 

Subsequently, we examine the effects of household composition on children’s work and 

schooling via the household dependency ratio. Our findings indicate that children are more 

likely to engage in work and not attend school in households with high dependency ratios. 

The probability of children working was also found to be higher in rural areas than in urban 

areas, which is a global and general characteristic of child labour. Table 4 also confirms the 

Basu and Vans (1998) luxury axiom that poverty drives child labour. Usually, the joint 

probability of working and not going to school drops sharply with household wealth. 

Children in poor households were found to have a higher probability of working and a lower 

likelihood of attending school. This result is generally consistent with theoretical literature, 

which mentions poverty as one of the main factors explaining child labour.  

Table 5. Binary Propensity Score Model, Pr(D=1|X=x)=Φ(X’β) presents the results for the 

individual samples of analysis stratified by expenditure quintiles: bottom 20th percentile, 20th-

40th percentile, 40th-60th percentile, 60th-80th percentile, top 20th percentile. Estimates are for 

the Probit regression where the binary outcome takes a value one if the child is receiving any 

type of an educational transfer or assistantship. The results are generally unsurprising and 

reveal a number of significant covariates of programme participation. It is important to note 

that the standard regression based method and propensity score matching differs significantly 

with regard to the choice of control variables. In a standard regression, preference is usually 

given to variables that one can argue are exogenous to outcomes, but in propensity score 
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matching the primary interest is in covariates (not good predictors) and thus including 

variables even when they are poor predictors. Analytic results and simulations of Rubin and 

Thomas (1996) suggests that variables with weak predictive ability for outcomes can still 

help minimise bias in estimating casual effects with propensity score matching. In essence, 

the main purpose of the propensity score estimation is not to predict selection into treatment 

but to balance covariates and get closer to the observationally identical non-participant. 

Next, the common support region was examined by plotting a histogram of the propensity 

score. The common support is the region where the propensity score has a positive density for 

both treated and non-treated units. Figures 1 gives the frequency distribution of the 

propensity scores based on Table 5. Binary Propensity Score Model, Pr(D=1|X=x)=Φ(X’β) 

for the children receiving (treated) and not receiving (untreated) any educational 

assistantship. All other histograms reveal that there is a substantial region of overlap, and that 

a severe common support problem does not exist. It is evident from Figure 1. Overlap and 

Distribution of Propensity Scores that any combination of characteristics observed in the 

treatment groups can be observed among the control groups among all estimated quintiles. In 

all quintiles, the probability mass in the treated group is located to the same side of that of the 

non-treated group. Since the main purpose is not on the Probit probability estimations but to 

match households, it is encouraging to see that a large fraction of households from both 

groups (treated and untreated) gets an estimated probability in the same range. The upshot of 

Figure 1. Overlap and Distribution of Propensity Scores is that there is sufficient common 

support that provides strong evidence for causal inference. 

Results on covariate balancing are presented in the Appendix. Each cell reports the average 

standardised bias of the different covariates after matching. It is evident that the differences 

between the households in the treated and untreated groups are quite small after matching, 

and that matching has removed any bias that had existed for almost all covariates. A t-test of 

equality of means in the two samples of participants and nonparticipants indicates that there 

is no systematic pattern of significant differences between the covariates in the treatment and 

non-treated groups after conditioning on the propensity score. The exact number of 

individuals lost due to common support requirement is also negligible in Table 6. Individuals 

lost due to common support requirement (%). 

Table 7. Binary Treatment Effects of Educational Assistance on Child Education Spending 

reports the estimated mean impacts of educational transfers on children’s voluntary 

educational spending. The estimates of the average treatment effect on the treated (ATT) are 
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obtained via propensity score matching, using four matching algorithms and imposing the 

‘minima and maxima’ common support. The results for the mean impact indicate that 

receiving educational transfers and assistance significantly increases education spending for 

the bottom three quintiles, though the magnitude varies by matching method.  

For all quintile groups, children receiving educational assistance or transfers spend more at 

the margin on education than what they would have spent without any educational support. 

For example, Table 7. Binary Treatment Effects of Educational Assistance on Child 

Education Spending shows that children receiving educational assistance spend between 10% 

and 14% more at the margin on voluntary educational goods. In other words, when 

controlling for the level of expenditure, households receiving educational assistance and 

transfers spend more of their additional increments to expenditure on education. 

These large marginal increases in ‘child-specific’ education spending arising from 

educational transfers and scholarships thus confirm the existence of an intra-household fly-

paper-effect. However, these gains are not visible for the children in the 80th-100th percentile, 

implying that even if children in the richest quintile actually received some additional 

educational support, their households’ voluntary educational spending for them would not 

increase. 

Thus, a careful selection of only the poor and vulnerable households becomes a vital 

component in the design and success of any educational support programme. The poorest and 

vulnerable children should be given special priority in selection, and need to be regularly 

assessed to maintain the focus on the poor and low-income programme participants.  

Table 8 presents the results of the impact of educational transfers, scholarships and assistance 

on the probability of children to work. The estimates represent the marginal effects of a child 

receiving educational assistance on the probability of being in the labour force. It is evident 

from the results that the education cash transfers and assistance given to children were large 

enough to reduce the amount of time spent working, especially among the poor. For instance, 

receiving education transfers and assistance reduces the probability of children working in the 

poorest households by one to three percentage points. The results again confirm that benefits 

are heavily skewed to the poor - the two lowest quintiles of the participating children receive 

the largest share of education assistance benefits. 

The additional financial support from education transfers and assistance seem to reduce the 

pressure for children to work and will in turn allow spending more time on school-related 
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activities. Our results are consistent with previous research, which has shown that transfer 

programmes rolled out to reduce child labour and increase schooling and homework time are 

all changes which may improve educational achievement (Maluccio, 2009; Skoufias ad 

Parker, 2001). We also find no significant impact of transfers on voluntary educational 

spending for the children in the upper part of the welfare distribution. These results are not 

surprising, as the transfers and assistance were too small of an incentive to have any positive 

effects on school enrolment for students at the upper part of the welfare distribution. 
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7.	  Conclusion	  and	  Policy	  Implications	  
 

This paper has used a large, nationally representative household survey from Indonesia to 

analyse how the receipt of educational transfers, scholarships and related assistance affects 

the child labour supply and households' spending behaviour on children’s education and 

related goods and services.  

Several key findings emerged from the study. We found strong evidence of a reduction in the 

labour supply of children at the bottom of the welfare distribution (lowest 20 percent) due to 

Indonesia’s education cash transfers and related assistance. Households receiving educational 

transfers, scholarships and assistance were also found to spend more at the margin on 

voluntary educational goods. At the mean, households receiving educational transfers, 

scholarships and assistance spend 10% to 14% more on their children’s voluntary educational 

goods at the margin than what they would have without any additional educational support. 

These large marginal increases in education spending at the child-level arising from 

educational transfers and scholarships thus confirm the existence of an intra-household fly-

paper-effect. Educational transfers, scholarships and assistance have been associated with 

increased voluntary educational spending on the child receiving such support, with little re-

allocation taking place within the household, providing strong evidence of benefits sticking to 

children. If education transfers and assistance are viewed as transitory and uncertain stream 

of income and support, then our findings are consistent with the permanent income 

hypothesis, which generally finds that the marginal propensity to invest the transitory income 

(transfers, subsidies, remittances, etc.) is higher than that for permanent income, such as 

salaries (Paxson,1992). 

Thus it becomes evident that a well-targeted and administered educational assistance 

programme that lowers the price of schooling can be successful in inducing children to spend 

less time on work, especially among the poor. Since the benefits of education transfers and 

support programmes are mostly concentrated among the poor and vulnerable, it is important 

to identify and select only the poor and vulnerable households for any targeted education 

support intervention. Our results are particularly relevant in the context of understanding the 

role of cash transfers and educational assistance in middle-income countries, where school 

enrolment rates are already at satisfactory levels, but the challenge is to keep the students in 

school at post-primary educational institutions. A relatively higher marginal propensity to 
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invest in education among transfer- and assistance- receiving households in Indonesia will 

undoubtedly be beneficial in augmenting human capital in the country. 

In summary, our findings suggest that educational transfers, scholarships and assistance are 

successful in increasing household investments in education as well as in reducing children’s 

labour supply by providing an incentive to forgo the labour income. Our results suggest that 

transfer schemes in Indonesia could be further improved and redesigned to increase the 

children’s educational spending and time spent in school. For example, larger transfers, 

incentives for school completion and payments that vary with the geographic remoteness of 

the household could be considered to improve BSM. A special emphasis could be given to 

rural areas, and a condition could be set that the children in the households receiving the 

educational transfers must attend school and are not allowed to work at all. Improving the 

schools themselves could probably also reduce children’s labour supply and encourage them 

to spend more time in school. Improved targeting, combined with the expansion of 

programme’s coverage and sharper geographical targeting, and an increasing in the real value 

of the transfer, are thus the most plausible policies that can enhance the impact of transfers on 

children’s educational achievements. 

The findings of this study lend support to the growing view in the literature that educational 

transfers, scholarships and related assistance can actually have a positive impact on economic 

development by increasing the level of investment in human capital. The principle message 

that emerges from the study is that there are quantitatively non-negligible average gains from 

educational transfers and support programmes on household education spending and child 

labour, especially for the poor. 
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Figure 1. Overlap and Distribution of Propensity Scores: Overlap and Distribution of 
Propensity Scores 
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Figure 2: Matching Quality –  –Standardised Bias Reductio
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Table 1:  Education of Children Age 7-18 

 

 

Table 2: Reason for Not Enrolling in School 

 

 

Table 3: Highest Diploma Obtained 

 

  

All Male Female Java Off Java Urban Rural
Not/neverenrolled 1.45 1.54 1.37 1.45 0.7 0.61 1.89
Enrolled 84.8 84.44 85.2 84.8 84.39 88.99 82.66
DropAout 13.74 14.03 13.43 13.74 14.92 10.4 15.45
Not/neverenrolled 1.58 1.68 1.48 0.6 1.9 0.5 2.1
Enrolled 85.29 84.82 85.88 84.8 85.5 88.8 83.58
DropAout 13.13 13.5 12.72 14.6 12.6 10.7 14.32
Not/neverenrolled 2.25 2.31 2.19 0.89 2.74 0.62 3.31
Enrolled 87.06 86.22 87.96 87.87 86.77 90.59 84.79
DropAout 10.69 11.48 9.85 11.25 10.49 8.79 11.91

2007

2009

2011

Age7-12 Age7-18 Age7-12 Age7-18 Age7-12 Age7-18
No money 35.3 52.48 35.3 51.12 32.26 43.58
Have to work 1.63 7.38 2.6 9.7 1.51 10.18

2007 2009 2011

Male Female Age 7-18 Java Off Java
None 29.85 31.39 55.64 26.76 35.25
Elementary 27.4 29.35 24.46 30.4 27.47
JuniorHigh 15.93 14.93 14.86 15.08 15.6
SeniorHigh 12.89 11.43 1.6 11.13 12.63
Vocational 5.13 3.69 0.42 5.67 3.89
None 31.3 32.6 55.2 28.4 33.4
Elementary 26.5 27.8 24.1 28.6 26.5
JuniorHigh 15.6 14.9 15.3 14.9 15.4
SeniorHigh 13.5 12 1.8 11.3 -
Vocational 5.13 3.62 0.55 6.09 3.67
None 30.39 31.89 55.84 27.45 32.73
Elementary 26.65 27.78 24.92 28.43 26.66
JuniorHigh 15.3 14.89 15.47 14.95 15.17
SeniorHigh 13.05 11.31 0.51 11.23 12.62
Vocational 5.4 3.87 0.38 6.08 4.03

2009

2011

2007
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Table 4: Child Labour Supply and School Attendance – Bivariate Probit Regressions 

 

Note: The general structure of the bivariate Probit specification can be expressed as: 

 𝑦!∗ = 𝑿𝟏! 𝜷𝟏 + 𝜀! and 𝑦!∗ = 𝑿𝟐! 𝜷𝟐 + 𝜀!. Where the observability criteria for the two binary outcomes can be stated as: 

𝑦! =
1  𝑖𝑓  𝑦!∗ > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑦! =

1  𝑖𝑓  𝑦!∗ > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

  

(1) (2)

VARIABLES

Working Equation 
Marginal Effect 
(dy/dx)

School Equation 
Marginal Effect 
(dy/dx)

Age of Child 0.0208*** -0.0248***
(0.0004) (0.0005)

Male Child 0.0209*** -0.0103***
(0.0012) (0.0013)

Household Head Age -0.0002*** 0.0002***
(0.0001) (0.0001)

Household Head Female 0.0225*** -0.0102***
(0.0026) (0.0025)

Household Head - SD Education -0.0181*** 0.0269***
(0.0013) (0.0013)

Household Head - SMP Education -0.0090*** 0.0376***
(0.0017) (0.0014)

Household Head - SMA Education -0.0107*** 0.0459***
(0.0017) (0.0013)

Household Head in Informal Sector 0.0275*** -0.0089***
(0.0014) (0.0016)

Household Head in Agriculture 0.0174*** -0.0123***
(0.0015) (0.0017)

Rural 0.0298*** -0.0058***
(0.0014) (0.0017)

House with Poor Sanitation 0.0299*** -0.0367***
(0.0016) (0.0018)

Household Dependency Ratio 0.0148*** -0.0045***
(0.0008) (0.0009)

Poor Household 0.0034** -0.0433***
(0.0015) (0.0021)

Observations 117,561 117,561
Rho -0.5606
 Wald chi-sqr(26) 8572.32
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 5. Binary Propensity Score Model, 𝐏𝐫 𝑫 = 𝟏|𝑿 = 𝒙 = 𝚽 𝑿′𝜷  

 

  

Quintile -1 Quintile2 Quintile - 3 Quintile - 4 Quintile - 5
female 0.032 0.070*** 0.045* 0.121*** 0.094***

(0.023) (0.025) (0.027) (0.028) (0.032)
age 0.041*** 0.046*** 0.049*** 0.039*** 0.042***

(0.003) (0.003) (0.003) (0.003) (0.003)
Urban 0.038 0.062 0.018 -0.007 -0.143***

(0.042) (0.038) (0.036) (0.037) (0.037)
Age-HHH -0.001 0.001 -0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.002) (0.002)
Female-HHH 0.238*** 0.225*** 0.278*** 0.219*** 0.268***

(0.045) (0.045) (0.047) (0.047) (0.050)
Share male age 0-6 0.183 -0.042 0.468*** -0.153 0.067

(0.160) (0.164) (0.170) (0.182) (0.197)
Share female age 0-6 0.032 0.063 0.021 -0.002 0.100

(0.162) (0.168) (0.176) (0.188) (0.202)
Share males age 6-17 -0.075 0.090 -0.118 0.102 -0.000

(0.137) (0.129) (0.128) (0.131) (0.125)
Share females age 6-17 0.060 0.129 0.021 -0.075 0.017

(0.138) (0.134) (0.131) (0.134) (0.136)
Share females age 18-64 0.032 0.120 0.040 0.043 -0.218

(0.172) (0.164) (0.158) (0.153) (0.148)
Share males age 65+ 0.222 0.406 0.453* 0.363 0.421

(0.279) (0.269) (0.269) (0.269) (0.292)
Share females age 65+ 0.102 -0.236 0.271 0.150 -0.296

(0.249) (0.242) (0.231) (0.239) (0.275)
HHH in Agri -0.003 0.035 0.010 0.018 0.132***

(0.032) (0.033) (0.032) (0.034) (0.038)
HHH in mining -0.147 0.075 0.042 0.186** 0.126

(0.092) (0.090) (0.083) (0.082) (0.086)
HHH in elec/gas/water -0.064 -0.003 -0.046 -0.483* 0.076

(0.254) (0.250) (0.240) (0.287) (0.129)
HHH in construction -0.022 0.206*** 0.130*** 0.143*** -0.008

(0.054) (0.049) (0.049) (0.049) (0.061)
HHH in trade/restaurent -0.025 -0.030 -0.075* -0.004 0.036

(0.052) (0.047) (0.041) (0.037) (0.036)
HHH edu-sd 0.008 -0.042 -0.039 -0.044 0.062

(0.028) (0.030) (0.031) (0.033) (0.038)
HHH edy-smp -0.033 -0.015 -0.012 -0.068* 0.000

(0.039) (0.039) (0.039) (0.039) (0.042)
HHH edu-sma -0.054 -0.086** -0.044 -0.088** -0.019
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Table 5 (Cont.): Binary Propensity Score Model, 𝐏𝐫 𝑫 = 𝟏|𝑿 = 𝒙 = 𝚽 𝑿′𝜷  

 

Quintile -1 Quintile2 Quintile - 3 Quintile - 4 Quintile - 5
House-own -0.037 -0.024 -0.118*** -0.198*** -0.096*

(0.046) (0.045) (0.045) (0.044) (0.055)
House-lease/rent 0.027 0.207*** -0.015 -0.029 -0.032

(0.073) (0.066) (0.064) (0.063) (0.072)
House-freelease -0.102 -0.091 -0.224** -0.214** -0.070

(0.088) (0.091) (0.102) (0.096) (0.113)
House-official -0.230 -0.246 -0.241* -0.490*** -0.084

(0.191) (0.164) (0.129) (0.118) (0.084)
Floor-not soil -0.011 0.026 -0.133*** -0.059 0.005

(0.037) (0.040) (0.044) (0.056) (0.074)
Wall-concrete -0.134*** -0.221*** -0.094* -0.069 -0.148*

(0.044) (0.046) (0.051) (0.063) (0.077)
Wall-wood -0.008 -0.117** -0.011 0.001 -0.045

(0.042) (0.048) (0.052) (0.065) (0.081)
Roof-concrete/tile -0.038 -0.199*** -0.078 -0.152** -0.028

(0.064) (0.065) (0.071) (0.071) (0.079)
Roof-iron sheet -0.061 -0.218*** -0.058 -0.103* 0.013

(0.040) (0.044) (0.051) (0.053) (0.067)
Roof-asbestos -0.141* -0.205** -0.073 -0.131* -0.055

(0.086) (0.084) (0.086) (0.080) (0.092)
Water-branded recycled 0.060 -0.015 0.023 -0.120* -0.087

(0.090) (0.080) (0.073) (0.068) (0.061)
Water piped meter -0.042 0.040 0.126** -0.033 -0.005

(0.058) (0.054) (0.052) (0.053) (0.052)
Water-terrestial/pump 0.084* -0.081* -0.024 -0.044 -0.004

(0.049) (0.047) (0.046) (0.045) (0.053)
Water-protected/well -0.006 -0.041 -0.017 -0.109*** 0.022

(0.031) (0.032) (0.034) (0.036) (0.045)
Water drinking-buy -0.003 -0.101** -0.090** -0.096** 0.043

(0.047) (0.047) (0.046) (0.044) (0.042)
Electricity-PLN -0.023 0.053 -0.068 -0.085 0.082

(0.039) (0.045) (0.048) (0.057) (0.086)
Electricity-non PLN 0.016 0.084 -0.006 -0.053 0.034

(0.054) (0.061) (0.063) (0.068) (0.095)
Electricity-parafin/petro -0.152* -0.184 -0.024 0.039 -0.181

(0.088) (0.114) (0.106) (0.127) (0.213)
Toilet-tank/septic -0.113*** -0.070* -0.097** -0.023 -0.124*

(0.040) (0.041) (0.044) (0.050) (0.066)
Toilet-river/lake/sea -0.102** 0.012 0.008 0.024 0.042

(0.041) (0.042) (0.048) (0.056) (0.076)
Toilet-pithole -0.105*** 0.008 -0.047 0.020 -0.015

(0.040) (0.042) (0.047) (0.054) (0.072)
Constant -2.249*** -1.994*** -1.610*** -1.395*** -5.575***

(0.440) (0.299) (0.324) (0.310) (0.197)
Observations 44,137 45,222 44,953 45,445 44,067
Pseudo R-Squared 0.20 0.17 0.19 0.17 0.18
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Table 6: Individuals lost due to common support requirement (%) 

 

 

 

 

 

 

 

 

  

Matching Algorithm Quintile - 1 Quintile - 2 Quintile - 3 Quintile - 4 Quintile - 5

NN 0.000 0.000 0.000 0.000 0.000
5-NN 0.000 0.000 0.000 0.000 0.000
NN (caliper): δ=0.001 0.000 0.254 0.084 0.114 0.059
Radius: δ=0.001 0.000 0.254 0.084 0.114 0.059
Kernel
Epanechnikov (bw=0.06) 0.000 0.000 0.000 0.000 0.000
Gaussian (bw=0.1) 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000
5-NN 0.000 0.000 0.000 0.000 0.000
NN (caliper): δ=0.001 0.378 0.229 0.102 0.086 0.049
Radius: δ=0.001 0.378 0.229 0.102 0.086 0.049
Kernel
Epanechnikov (bw=0.06) 0.000 0.000 0.000 0.000 0.000
Gaussian (bw=0.1) 0.000 0.000 0.000 0.000 0.000
Matching Algorithm
NN 0.000 0.000 0.000 0.000 0.000
5-NN 0.000 0.000 0.000 0.000 0.000
NN (caliper): δ=0.001 0.022 0.036 0.089 0.092 0.063
Radius: δ=0.001 0.022 0.036 0.089 0.092 0.063
Kernel
Epanechnikov (bw=0.06) 0.000 0.000 0.000 0.000 0.000
Gaussian (bw=0.1) 0.000 0.000 0.000 0.000 0.000
Matching Algorithm
NN 0.000 0.000 0.000 0.000 0.000
5-NN 0.000 0.000 0.000 0.000 0.000
NN (caliper): δ=0.001 0.642 0.295 0.272 0.241 0.045
Radius: δ=0.001 0.642 0.295 0.272 0.241 0.045
Kernel
Epanechnikov (bw=0.06) 0.000 0.000 0.000 0.000 0.000
Gaussian (bw=0.1) 0.000 0.000 0.000 0.000 0.000
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Table 7: Binary Treatment Effects of Educational Assistance on Child Education 
Spending 

 

  

Matching Algorithm ATT: Quintile - 1 ATT: Quintile - 2 ATT: Quintile - 3 ATT: Quintile - 4 ATT: Quintile - 5
NN 0.106 0.097 0.141 0.046 0.048

(0.030)*** (0.036)*** (0.040)*** (0.044) (0.053)
5-NN 0.092 0.045 0.093 0.036 0.055

(0.024)*** (0.025)** (0.031)*** (0.034) (0.041)
NN (caliper): δ=0.001 0.100 0.077 0.139 0.032 0.037

(0.030)*** (0.035)** (0.040)*** (0.044) (0.054)
Radius: δ=0.001 0.086 0.017 0.075 0.029 0.047

(0.023)*** (0.026) (0.029)*** (0.031) (0.038)
Kernel
Epanechnikov (bw=0.06) 0.086 0.055 0.084 0.036 0.032

(0.022)*** (0.026)** (0.028)*** (0.031) (0.037)
Gaussian (bw=0.1) 0.100 0.067 0.088 0.026 0.025

(0.021)*** (0.024)** (0.027)*** (0.030) (0.036)
NN 0.110 0.120 0.086 0.030 0.090

(0.043)*** (0.049)** (0.054) (0.057) (0.066)
5-NN 0.102 0.072 0.075 0.014 0.032

(0.034)*** (0.038)** (0.041)* (0.045) (0.051)
NN (caliper): δ=0.001 0.093 0.104 0.065 0.027 0.071

(0.043)** (0.048)*** (0.054) (0.058) (0.067)
Radius: δ=0.001 0.080 0.028 0.068 -0.010 0.019

(0.032)** (0.035) (0.039)* (0.042) (0.048)
Kernel
Epanechnikov (bw=0.06) 0.101 0.046 0.092 -0.012 -0.023

(0.032)*** (0.035) (0.038)** (0.041) (0.046)
Gaussian (bw=0.1) 0.101 0.061 0.076 -0.037 -0.095

(0.030)*** (0 .033)** (0.036)** (0.040) (0.076)
NN 0.058 0.077 0.001 0.092 0.132

(0.028)** (0.035)** (0.041) (0.044)** (0.054)**
5-NN 0.048 0.029 0.040 0.041 0.107

(0.022)** (0.027) (0.032) (0.034) (0.042)**
NN (caliper): δ=0.001 0.059 0.079 -0.002 0.084 0.123

(0.028)** (.035)** (0.041) (0.044)* (0.054)**
Radius: δ=0.001 0.035 0.014 0.029 0.046 0.090

(0.021)** -0.025 (0.030) (0.032) (0.040)**
Kernel
Epanechnikov (bw=0.06) 0.039 0.023 0.054 0.052 0.103

(0.020)* (0.024) (0.029)* (0.031)* (0.040)**
Gaussian (bw=0.1) 0.052 0.044 0.084 0.068 0.100

(0 .020)** (0.024)* (0.028)*** (0.030)** (0.058)**
NN 0.062 0.0620 0.058 0.059 0.052

(0.031)** (0.034)* (0.060) (0.066) (0.158)
5-NN 0.029 0.026 0.061 0.016 0.006

(0.027) (0.033) (0.048) (0.052) (0.124)
NN (caliper): δ=0.001 0.075 0.0560 0.050 0.075 0.064

(0.032)** (0.039) (0.061) (0.063) (0.158)
Radius: δ=0.001 0.023 0.006 0.047 0.002 0.074

(0.026) (0.032) (0.047) (0.050) (0.115)
Kernel
Epanechnikov (bw=0.06) 0.019 0.000 0.067 -0.008 0.019

(0.024) (0.030) (0.045) (0.050) (0.112)
Gaussian (bw=0.1) 0.021 0.007 0.088 -0.021 0.049

(0.023) (0.029) (0.043)** (0.047) (0.110)

T
ot

al
 V

ol
un

ta
ry

 E
xp

en
di

tu
re

B
oo

ks
 a

nd
 S

ta
ti

on
ar

y
O

th
er

 S
up

po
rt

 M
at

er
ia

l
T

ut
or

in
g/

C
ou

rs
es



44 
	  

Table 8: Binary Treatment Marginal Effects of Educational Assistance on Child Labour Supply 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	   	  

Matching Algorithm ATT: Quintile - 1 ATT: Quintile - 2 ATT: Quintile - 3 ATT: Quintile - 4 ATT: Quintile - 5
NN -0.032 -0.0238** -0.0037 -0.0073 0.0039

(0.010)*** (0.01) (0.011) (0 .0122) (0.012)
5-NN -0.013 -0.004 -0.001 0.007 0.010

(0.007)** (0.009) (0.008) (0 .0093) (0.0095)
NN (caliper): δ=0.001 -0.021 -0.014 -0.006 -0.007 0 .0013

(0.009)** (0.011) (0.011) (0.012) (0.012)
Radius: δ=0.001 -0.010 0.003 0 .0017 -0.001 0.011

(0.01) (0.008) (0.008) (0 .0090) (0.009)
Kernel
Epanechnikov (bw=0.06) -0.011 0.001 0 .0066 0.007 0.012

(0.007)* (0.009) (0.008) (0.009) (0.009)
Gaussian (bw=0.1) -0.006 0.005 0 .0067 0.010 0.017

(0.007) (0.008) (0 .0075) (0 .0084) (0.009)



45	  
	  

Appendix	  
 

Matching Quality Indicators for Quintile - 1 

 

  

Variable Treated Control %bias t p>t
female 0.50 0.48 4.30 1.68 0.09
age 11.40 11.67 -8.80 -3.38 0.00
Urban 0.20 0.20 -1.70 -0.67 0.51
Age-HHH 44.50 45.10 -5.80 -2.28 0.02
Female-HHH 0.12 0.13 -3.50 -1.25 0.21
Share male age 0-6 0.07 0.06 2.60 1.01 0.31
Share female age 0-6 0.06 0.06 1.80 0.71 0.48
Share males age 6-17 0.21 0.21 -0.40 -0.15 0.88
Share females age 6-17 0.20 0.20 3.30 1.28 0.20
Share females age 18-64 0.23 0.23 -7.20 -2.64 0.01
Share males age 65+ 0.01 0.01 -2.70 -1.04 0.30
Share females age 65+ 0.01 0.02 -1.10 -0.44 0.66
HHH in Agri 0.64 0.64 0.50 0.21 0.83
HHH in mining 0.01 0.01 0.30 0.12 0.91
HHH in elec/gas/water 0.00 0.00 -0.80 -0.33 0.74
HHH in construction 0.05 0.05 1.70 0.69 0.49
HHH in trade/restaurent 0.06 0.07 -3.70 -1.43 0.15
HHH edu-sd 0.37 0.37 -1.40 -0.55 0.58
HHH edu-smp 0.14 0.14 -1.30 -0.51 0.61
HHH edu-sma 0.11 0.10 1.50 0.62 0.54
House-own 0.85 0.86 -2.80 -1.13 0.26
House-lease/rent 0.04 0.04 2.60 1.02 0.31
House-freelease 0.02 0.02 0.60 0.26 0.80
House-official 0.00 0.01 -4.40 -1.68 0.09
Floor-not soil 0.79 0.79 -1.90 -0.72 0.47
Wall-concrete 0.31 0.33 -3.90 -1.55 0.12
Wall-wood 0.48 0.47 2.70 1.07 0.29
Roof-concrete/tile 0.25 0.25 -0.40 -0.18 0.86
Roof-iron sheet 0.51 0.52 -2.10 -0.81 0.42
Roof-asbestos 0.02 0.03 -2.20 -0.88 0.38
Water-branded recycled 0.03 0.03 -1.80 -0.66 0.51
Water piped meter 0.09 0.08 0.70 0.27 0.79
Water-terrestial/pump 0.09 0.09 -0.30 -0.14 0.89
Water-protected/well 0.26 0.27 -1.40 -0.57 0.57
Water drinking-buy 0.14 0.14 0.50 0.18 0.85
Electricity-PLN 0.57 0.58 -3.00 -1.16 0.25
Electricity-non PLN 0.09 0.09 -0.40 -0.13 0.90
Electricity-parafin/petro 0.02 0.03 -3.90 -1.48 0.14
Toilet-tank/septic 0.29 0.30 -2.70 -1.06 0.29
Toilet-river/lake/sea 0.21 0.22 -2.20 -0.90 0.37
Toilet-pithole 0.24 0.26 -5.00 -1.96 0.05
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Matching Quality Indicators for Quintile – 2 

 
 

  

Variable Treated Control %bias t p>t
female 0.52 0.53 -1.30 -0.48 0.63
age 11.86 11.93 -2.10 -0.75 0.45
Urban 0.27 0.28 -1.70 -0.59 0.55
Age-HHH 44.99 44.95 0.40 0.15 0.88
Female-HHH 0.12 0.14 -5.50 -1.77 0.08
Share male age 0-6 0.05 0.05 -1.20 -0.43 0.67
Share female age 0-6 0.04 0.04 -1.80 -0.63 0.53
Share males age 6-17 0.21 0.21 0.80 0.28 0.78
Share females age 6-17 0.21 0.21 -1.20 -0.42 0.67
Share females age 18-64 0.24 0.24 1.90 0.64 0.52
Share males age 65+ 0.01 0.01 2.50 0.88 0.38
Share females age 65+ 0.01 0.02 -4.30 -1.45 0.15
HHH in Agri 0.57 0.55 2.80 0.99 0.32
HHH in mining 0.02 0.02 -0.30 -0.10 0.92
HHH in elec/gas/water 0.00 0.00 0.00 0.00 1.00
HHH in construction 0.09 0.08 1.90 0.65 0.52
HHH in trade/restaurent 0.08 0.09 -2.40 -0.85 0.39
HHH edu-sd 0.35 0.37 -4.70 -1.67 0.10
HHH edu-smp 0.16 0.16 1.70 0.61 0.54
HHH edu-sma 0.14 0.13 2.10 0.78 0.44
House-own 0.83 0.82 2.10 0.73 0.46
House-lease/rent 0.07 0.07 -0.30 -0.11 0.91
House-freelease 0.02 0.02 0.50 0.19 0.85
House-official 0.01 0.00 4.30 2.07 0.04
Floor-not soil 0.85 0.85 1.40 0.47 0.64
Wall-concrete 0.40 0.41 -2.50 -0.88 0.38
Wall-wood 0.46 0.45 1.20 0.42 0.67
Roof-concrete/tile 0.29 0.29 0.30 0.09 0.93
Roof-iron sheet 0.51 0.53 -4.80 -1.71 0.09
Roof-asbestos 0.03 0.03 2.70 1.00 0.32
Water-branded recycled 0.04 0.04 1.40 0.49 0.63
Water piped meter 0.13 0.14 -2.60 -0.91 0.36
Water-terrestial/pump 0.10 0.09 0.90 0.33 0.74
Water-protected/well 0.28 0.29 -2.10 -0.75 0.46
Water drinking-buy 0.19 0.19 -0.40 -0.14 0.89
Electricity-PLN 0.71 0.71 0.60 0.22 0.83
Electricity-non PLN 0.07 0.07 3.20 1.16 0.25
Electricity-parafin/petro 0.01 0.02 -6.60 -2.32 0.02
Toilet-tank/septic 0.35 0.36 -1.90 -0.67 0.50
Toilet-river/lake/sea 0.22 0.21 1.60 0.58 0.56
Toilet-pithole 0.24 0.24 -1.70 -0.59 0.56
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Matching Quality Indicators for Quintile – 3 

 
 
 

  

Variable Treated Control %bias t p>t
female 0.52 0.51 1.00 0.34 0.74
age 12.22 12.35 -4.10 -1.38 0.17
Urban 0.33 0.34 -2.20 -0.72 0.47
Age-HHH 45.21 45.12 0.90 0.28 0.78
Female-HHH 0.13 0.14 -1.20 -0.36 0.72
Share male age 0-6 0.04 0.04 -1.40 -0.45 0.65
Share female age 0-6 0.03 0.04 -1.30 -0.43 0.67
Share males age 6-17 0.20 0.20 -0.40 -0.12 0.91
Share females age 6-17 0.20 0.20 1.20 0.37 0.71
Share females age 18-64 0.26 0.26 -0.30 -0.09 0.93
Share males age 65+ 0.01 0.01 -0.40 -0.13 0.89
Share females age 65+ 0.02 0.02 -2.10 -0.61 0.55
HHH in Agri 0.46 0.46 0.00 0.00 1.00
HHH in mining 0.02 0.03 -1.60 -0.49 0.63
HHH in elec/gas/water 0.00 0.00 -0.90 -0.28 0.78
HHH in construction 0.08 0.08 -0.20 -0.06 0.96
HHH in trade/restaurent 0.11 0.10 2.60 0.91 0.36
HHH edu-sd 0.33 0.34 -3.30 -1.07 0.28
HHH edu-smp 0.16 0.16 0.90 0.29 0.77
HHH edu-sma 0.19 0.19 0.90 0.31 0.76
House-own 0.81 0.81 1.00 0.31 0.76
House-lease/rent 0.07 0.07 -1.70 -0.55 0.58
House-freelease 0.02 0.02 0.30 0.11 0.91
House-official 0.01 0.01 0.00 0.00 1.00
Floor-not soil 0.87 0.87 0.00 0.00 1.00
Wall-concrete 0.50 0.50 -0.20 -0.06 0.95
Wall-wood 0.39 0.40 -2.50 -0.82 0.41
Roof-concrete/tile 0.33 0.31 3.30 1.09 0.28
Roof-iron sheet 0.52 0.55 -6.20 -2.03 0.04
Roof-asbestos 0.04 0.04 2.30 0.77 0.44
Water-branded recycled 0.06 0.07 -5.70 -1.80 0.07
Water piped meter 0.16 0.16 -0.30 -0.08 0.93
Water-terrestial/pump 0.12 0.10 4.30 1.48 0.14
Water-protected/well 0.29 0.28 3.60 1.19 0.23
Water drinking-buy 0.23 0.25 -5.60 -1.83 0.07
Electricity-PLN 0.77 0.78 -2.60 -0.81 0.42
Electricity-non PLN 0.08 0.07 5.10 1.68 0.09
Electricity-parafin/petro 0.02 0.02 -3.90 -1.16 0.25
Toilet-tank/septic 0.45 0.48 -5.40 -1.75 0.08
Toilet-river/lake/sea 0.20 0.18 4.40 1.45 0.15
Toilet-pithole 0.21 0.22 -1.00 -0.34 0.74
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Matching Quality Indicators for Quintile – 4 

 
 

  

Variable Treated Control %bias t p>t
female 0.52 0.52 -0.30 -0.10 0.92
age 12.39 12.48 -2.80 -0.88 0.38
Urban 0.38 0.39 -1.10 -0.33 0.74
Age-HHH 45.70 45.58 1.20 0.37 0.71
Female-HHH 0.13 0.15 -6.40 -1.74 0.08
Share male age 0-6 0.03 0.03 2.90 0.93 0.35
Share female age 0-6 0.03 0.03 2.40 0.76 0.45
Share males age 6-17 0.20 0.20 -1.20 -0.38 0.71
Share females age 6-17 0.20 0.20 0.60 0.17 0.86
Share females age 18-64 0.27 0.27 -4.80 -1.39 0.17
Share males age 65+ 0.01 0.01 -3.90 -1.06 0.29
Share females age 65+ 0.02 0.01 2.20 0.64 0.52
HHH in Agri 0.39 0.37 4.40 1.37 0.17
HHH in mining 0.03 0.03 0.00 0.00 1.00
HHH in elec/gas/water 0.00 0.00 0.00 0.00 1.00
HHH in construction 0.08 0.08 -0.20 -0.06 0.95
HHH in trade/restaurent 0.14 0.13 0.70 0.24 0.81
HHH edu-sd 0.31 0.29 2.40 0.74 0.46
HHH edu-smp 0.16 0.17 -2.40 -0.75 0.45
HHH edu-sma 0.23 0.25 -3.60 -1.14 0.25
House-own 0.80 0.80 1.60 0.49 0.63
House-lease/rent 0.08 0.08 0.80 0.24 0.81
House-freelease 0.02 0.02 -1.50 -0.46 0.64
House-official 0.01 0.01 0.00 0.00 1.00
Floor-not soil 0.92 0.93 -3.10 -0.95 0.35
Wall-concrete 0.57 0.58 -2.10 -0.66 0.51
Wall-wood 0.36 0.35 1.80 0.54 0.59
Roof-concrete/tile 0.33 0.32 2.40 0.76 0.45
Roof-iron sheet 0.52 0.53 -2.40 -0.75 0.46
Roof-asbestos 0.06 0.06 0.70 0.21 0.84
Water-branded recycled 0.08 0.08 -0.40 -0.12 0.91
Water piped meter 0.18 0.18 0.30 0.08 0.93
Water-terrestial/pump 0.14 0.13 3.70 1.18 0.24
Water-protected/well 0.25 0.27 -5.00 -1.55 0.12
Water drinking-buy 0.27 0.27 0.70 0.22 0.83
Electricity-PLN 0.81 0.83 -5.20 -1.56 0.12
Electricity-non PLN 0.09 0.09 1.00 0.29 0.77
Electricity-parafin/petro 0.01 0.01 3.40 1.03 0.30
Toilet-tank/septic 0.54 0.53 0.70 0.23 0.82
Toilet-river/lake/sea 0.16 0.17 -3.70 -1.09 0.28
Toilet-pithole 0.20 0.19 2.40 0.73 0.46
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Matching Quality Indicators for Quintile – 5 

 
  

Variable Treated Control %bias t p>t
female 0.54 0.56 -3.70 -1.04 0.30
age 12.84 13.15 -9.20 -2.66 0.01
Urban 0.49 0.50 -1.80 -0.50 0.62
Age-HHH 45.45 45.27 1.80 0.49 0.63
Female-HHH 0.13 0.13 -0.20 -0.05 0.96
Share male age 0-6 0.03 0.03 1.60 0.45 0.65
Share female age 0-6 0.03 0.03 -1.00 -0.28 0.78
Share males age 6-17 0.19 0.18 3.00 0.83 0.40
Share females age 6-17 0.20 0.21 -0.70 -0.18 0.85
Share females age 18-64 0.28 0.28 -1.80 -0.48 0.63
Share males age 65+ 0.01 0.01 0.70 0.19 0.85
Share females age 65+ 0.01 0.01 0.20 0.05 0.96
HHH in Agri 0.26 0.29 -6.30 -1.64 0.10
HHH in mining 0.03 0.03 -1.20 -0.32 0.75
HHH in elec/gas/water 0.01 0.01 2.00 0.58 0.56
HHH in construction 0.05 0.04 1.80 0.53 0.60
HHH in trade/restaurent 0.17 0.16 1.70 0.48 0.63
HHH edu-sd 0.22 0.21 1.80 0.48 0.63
HHH edu-smp 0.14 0.14 1.50 0.41 0.68
HHH edu-sma 0.31 0.30 3.10 0.89 0.37
House-own 0.81 0.80 1.80 0.50 0.62
House-lease/rent 0.07 0.08 -3.60 -1.00 0.32
House-freelease 0.02 0.01 1.00 0.29 0.77
House-official 0.04 0.04 0.60 0.19 0.85
Floor-not soil 0.96 0.95 4.40 1.11 0.27
Wall-concrete 0.69 0.69 -0.10 -0.04 0.97
Wall-wood 0.27 0.27 -1.00 -0.28 0.78
Roof-concrete/tile 0.37 0.36 2.20 0.63 0.53
Roof-iron sheet 0.53 0.53 -0.90 -0.25 0.80
Roof-asbestos 0.05 0.06 -4.00 -1.09 0.28
Water-branded recycled 0.17 0.16 1.80 0.53 0.60
Water piped meter 0.28 0.26 3.10 0.88 0.38
Water-terrestial/pump 0.13 0.12 1.70 0.49 0.63
Water-protected/well 0.21 0.22 -2.20 -0.61 0.54
Water drinking-buy 0.47 0.45 5.20 1.47 0.14
Electricity-PLN 0.88 0.86 6.60 1.72 0.09
Electricity-non PLN 0.08 0.08 -0.70 -0.20 0.85
Electricity-parafin/petro 0.00 0.01 -4.80 -1.22 0.22
Toilet-tank/septic 0.66 0.69 -7.40 -2.01 0.04
Toilet-river/lake/sea 0.11 0.09 7.00 1.87 0.06
Toilet-pithole 0.18 0.17 4.10 1.12 0.26
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